Известные парадоксы: потеря информации в черной дыре, парадокс семейной пары, Ахиллес и черепаха, парадокс о песке, парадокс Гемпеля. 

5. Paradoja de la pérdida de información en agujeros negros

Esta paradoja no es especialmente conocida por la mayoría de la población, pero supone un desafío para la física y la ciencia en general aún en la actualidad (aunque Stephen Hawkings propuso una teoría aparentemente viable al respecto). Se basa en el estudio del comportamiento de los agujeros negros e integra elementos de la teoría de la relatividad general y de la mecánica cuántica.

La paradoja se encuentra en que se supone que la información física desaparece por completo en los agujeros negros: se trata de eventos cósmicos que poseen una gravedad tan intensa que ni siquiera la luz es capaz de escapar de ella. Ello implica que ningún tipo de información podría escapar de ellos, de tal manera que termina por desaparecer para siempre.

Se sabe también que los agujeros negros desprenden radiación, una energía que se creía que terminaba por ser destruida por el propio agujero negro y que implicaba también que este se iba haciendo más pequeño, de tal manera que todo lo que se colaba en su interior terminaría por desaparecer junto con él.

Sin embargo esto contraviene la física y mecánica cuántica, según las cuales la información de todo sistema permanece codificado aún si su función de onda llegara a colapsar. Además de ello, la física propone que la materia ni se crea ni se destruye. Ello implica que la existencia y la absorción de la materia por parte de un agujero negro puede llevar a un resultado paradójico con la física cuántica.

Sin embargo, con el paso del tiempo Hawkings corrigió esta paradoja, proponiendo que la información no era en realidad destruida sino que permanecía en los límites del horizonte de sucesos de la frontera espacio-tiempo.

 

6. La paradoja de Abilene

No solo encontramos paradojas dentro del mundo de la física, sino que también es posible encontrar algunas vinculadas a elementos psicológicos y sociales. Una de ellas es la paradoja de Abilene, propuesta por Harvey.

Según esta paradoja, un matrimonio y los padres de él se encuentran jugando al dominó en una casa de Texas. El padre del marido propone visitar la ciudad de Abilene, con lo que la nuera coincide pese a ser algo que no le apetece al ser un largo viaje, al considerar que su opinión no coincidirá con la de los demás. El marido responde que le parece bien siempre y cuando a la suegra le parece bien. Esta última también acepta alegremente. Hacen el viaje, que resulta largo y poco grato para todos.

Al volver uno de ellos insinúa que ha sido un gran viaje. A ello la suegra responde que en realidad hubiese preferido no ir pero aceptó por creer que los demás querían ir. El marido responde que en realidad solo fue para satisfacer a los demás. Su esposa indica que a ella le ha pasado lo mismo y por el última el suegro refiere que sólo lo propuso por si los demás se estaban aburriendo, aunque no le apetecía realmente.

La paradoja se encuentra en que todos se mostraron de acuerdo en ir a pesar de que en realidad todos hubieran preferido no hacerlo, pero aceptaron a causa de la voluntad de no contravenir la opinión del grupo. Nos habla de conformidad social y el pensamiento grupal, y está relacionado con un fenómeno llamado espiral del silencio.

 

7. Paradoja de Zenón (Aquiles y la tortuga)

Semejante a la fábula de la liebre y la tortuga, esta paradoja procedente de la Antigüedad nos presenta un intento de demostrar que el movimiento no puede existir.

La paradoja nos presenta a Aquiles, el héroe mitológico apodado “el de los pies veloces”, el cual compite en una carrera con una tortuga. Teniendo en cuenta su velocidad y la lentitud de la tortuga, decide darle una ventaja bastante considerable. Sin embargo, cuando llega a la posición en la que estaba la tortuga inicialmente, Aquiles observa que esta ha avanzado en el mismo tiempo que él llegaba hasta allí y se encuentra más adelante.

Asimismo, cuando consigue superar esta segunda distancia que los separa la tortuga ha avanzado un poco más, algo que hará que tenga que continuar corriendo para llegar al punto donde ahora está la tortuga. Y al llegar allí, la tortuga seguirá por delante, pues sigue avanzando sin parar de tal manera que Aquiles siempre se encuentra detrás de ella.

Esta paradoja matemática es altamente contraintuitiva. Técnicamente es fácil de imaginar que Aquiles o cualquier persona acabaría por adelantar a la tortuga relativamente rápido, al ser más veloz. Sin embargo, lo que la paradoja propone es que si la tortuga no para ella seguirá avanzando, de tal manera que cada vez que Aquiles llegue a la posición a la que estaba esta estará un poquito más allá, de manera indefinida (aunque los tiempos serán cada vez más cortos.

Se trata de un cálculo matemático basado en el estudio de las series convergentes. De hecho, aunque pueda parecer sencilla esta paradoja no ha podido ser contrastada hasta hace relativamente poco, con el descubrimiento de la matemática infinitesimal.

 

8. La paradoja sorites

Una poco conocida paradoja pero que sin embargo resulta útil a la hora de tener en cuenta el uso del lenguaje y la existencia de conceptos vagos. Creada por Eubulides de Mileto, esta paradoja trabaja con la conceptualización del concepto montón.

Concretamente, se propone dilucidar cuánta cantidad de arena se consideraría un montón. Obviamente un grano de arena no parece un montón de arena. Tampoco dos, o tres. Si a cualquiera de estas cantidades le añadimos un grano más (n+1), seguiremos sin tenerlo. Si pensamos en miles, seguramente sí consideraremos estar ante un montón. Por otro lado, si a este montón de arena le vamos quitando grano a grano (n-1) tampoco podríamos decir que estamos dejando de tener un montón de arena.

La paradoja se encuentra en la dificultad para hallar en qué punto podemos considerar que estamos ante el concepto “montón” de algo: si tenemos en cuenta todas las consideraciones anteriores un mismo conjunto de granos de arena podría tanto clasificarse como montón como no hacerlo.

 

9. La paradoja de Hempel

Vamos llegando al final de esta lista de las paradojas más importantes con una vinculada al terreno de la lógica y el razonamiento. Concretamente, se trata de la paradoja de Hempel, la cual pretende dar cuenta de los problemas vinculados al uso de la inducción como elemento de conocimiento además de servir como problema a valorar a nivel estadístico.

Así, su existencia en el pasado ha facilitado el estudio de la probabilidad y de metodologías diversas para incrementar la fiabilidad de nuestras observaciones, como las propias del método hipotético-deductivo.

La paradoja en sí, conocida también como la del cuervo, establece que considerar que la afirmación “todos los cuervos son negros” es verdadero implica que “todos los objetos no negros no son cuervos”. Ello implica que todo lo que veamos que no sea negro y no sea un cuervo reforzará nuestra creencia y confirmará no solo que todo lo no negro no es un cuervo sino también la complementaria: “todos los cuervos son negros”. Estamos ante un caso en el que la probabilidad de que nuestra hipótesis original sea cierta aumenta cada vez que veamos un caso que no lo confirma.

Sin embargo, hay que tener en cuenta que lo mismo que nos confirmaría que todos los cuervos son negros también nos podría confirmar que son de cualquier otro color, así como el hecho de que únicamente si conociéramos todos los objetos no negros para garantizar que son no cuervos podríamos tener un convencimiento real.

 

Еще по теме:

Unas paradojas más famosas (Parte 1)

Qué es una paradoja y ejemplos de esta figura literaria (текст)

Nivel A1-A2. Аудирование ("Цифры"). La paradoja de la costa rompe la realidad | Fractales  (аудирование)