Известные парадоксы: лжец утверждает, что врет; кот Шредингера; убийство дедушки; парадокс множества.
Es probable que en más de una ocasión nos hayamos encontrado con alguna situación o realidad que nos haya parecido extraña, contradictoria o incluso paradójica. Y es que aunque el ser humano trate de buscar racionalidad y lógica en todo lo que ocurre a su alrededor, lo cierto es que con frecuencia es posible hallar eventos reales o hipotéticos que desafían lo que consideraríamos lógico o intuitivo.
Estamos hablando de paradojas, situaciones o proposiciones hipotéticas que nos llevan a un resultado del cual no podemos encontrar una solución, que parte de un razonamiento correcto pero cuya explicación es contraria al sentido común o incluso al propio enunciado.
Son muchas las grandes paradojas que se han creado a lo largo de la historia para intentar reflexionar sobre distintas realidades. Es por ello que a lo largo de este artículo vamos a ver algunas de las paradojas más importantes y conocidas, con una breve explicación al respecto.
1. La paradoja de Epiménides (o del cretense)
Una paradoja altamente conocida es la de Epiménides, la cual existe desde la Antigua Grecia y que sirve de base a otras semejantes basadas en el mismo principio. Esta paradoja se basa en la lógica y dice lo siguiente.
Epiménides de Cnosos es un hombre cretense, el cual afirma que todos los cretenses son unos mentirosos. Si esta afirmación es verdadera, entonces Epiménides miente, con lo que no es cierto que todos los cretenses sean mentirosos. Por otro lado si miente no es cierto que los cretenses sean mentirosos, con lo que su afirmación sería verdad lo que a su vez conllevaría que estuviera mintiendo.
2. El gato de Scrödinger
Probablemente una de las paradojas más conocidas es la de Scrödinger. Este físico procedente de Austria trataba con su paradoja explicar el funcionamiento de la física cuántica: el momento o función de onda en un sistema. La paradoja es la siguiente:
En una caja opaca disponemos una botella con un gas venenoso y un pequeño dispositivo con elementos radiactivos con probabilidad de un 50% de desintegrarse en un tiempo determinado, y metemos en ella a un gato. Si la partícula radiactiva se desintegra, el dispositivo hará que el veneno se libere y el gato morirá. Dada la probabilidad del 50% de desintegración, una vez pasado el tiempo ¿el gato dentro de la caja, está vivo o muerto?
Este sistema, desde una visión lógica, nos hará pensar que el gato efectivamente puede estar vivo o muerto. Sin embargo, si actuamos en base a la perspectiva de la mecánica cuántica y valoremos el sistema en el momento, el gato está muerto y vivo a la vez, dado que en base a la función de encontraríamos dos estados superpuestos en los que no podemos predecir el resultado final.
Únicamente si procedemos a comprobarlo podremos verlo, algo que rompería el momento y nos abocaría a uno de los dos desenlaces posibles. Así, una de las interpretaciones más populares establece que será la observación del sistema el que provoque que este se modifique, de manera inevitable en la medición de lo observado. El momento o la función de onda colapsa en ese momento.
3. La paradoja del abuelo
Siendo atribuida al escritor René Barjavel, la paradoja del abuelo es un ejemplo de la aplicación de este tipo de situaciones al campo de la ciencia ficción, concretamente a lo referente a los viajes en el tiempo. De hecho, a menudo ha sido utilizado como argumento de una posible imposibilidad de viajar en el tiempo.
Esta paradoja establece que si una persona viaja al pasado y eliminara a uno de sus abuelos antes que concibiera a uno de sus padres, la persona en sí no podría llegar a nacer.
Sin embargo, que el sujeto no haya nacido implica que no ha podido cometer el asesinato, algo que a su vez provocaría que sí naciera y pudiera llegara cometerlo. Algo que sin duda generaría que no pudiera nacer, y así sucesivamente.
4. La paradoja de Russell (y el barbero)
Una paradoja ampliamente conocida dentro del ámbito de las matemáticas es la propuesta por Bertrand Russell, en relación a la teoría de los conjuntos (según la cual todo predicado define a un conjunto) y al uso de la lógica como elemento principal al que se puede reducir la mayor parte de las matemáticas.
Existen numerosas variantes de la paradoja de Russell, pero todas ellas se basan en el descubrimiento de este autor de que “no pertenecerse a sí mismo” establece un predicado que contradice la teoría de los conjuntos. Según la paradoja, el conjunto de los conjuntos que no forman parte de sí mismos únicamente puede formar parte de sí mismo si no forma parte de sí mismo. Aunque dicho así suena extraño, a continuación os dejamos con un ejemplo menos abstracto y más fácilmente entendible, conocida como la paradoja del barbero.
“Hace mucho tiempo, en un lejano reino, había escasez de personas que se dedicaran a ser barberos. Ante este problema el rey de la región ordenó que los pocos barberos que había afeitaran única y exclusivamente a aquellas personas que no pueden afeitarse por sí mismas. Sin embargo en un pequeño pueblo de la zona únicamente existía un barbero, el cual se encontró ante una situación para la cual no encontraba solución: ¿quién le afeitaría a él?”.
El problema se encuentra en que si el barbero solo afeita a todos quienes no pueden afeitarse a sí mismos, técnicamente no podría afeitarse a sí mismo al solo poder afeitar a quienes no pueden. Sin embargo ello hace automáticamente que no pueda afeitarse, con lo que sí podría afeitarse a sí mismo. Y a su vez eso volvería a llevarle a no poder afeitarse al no ser incapaz de afeitarse. Y así sucesivamente.
De este modo, la única manera de que el barbero formara parte de las personas que debe afeitar sería precisamente que no formara parte de las personas que debe afeitar, con lo que nos encontramos con la paradoja de Russell.
Еще по теме:
Unas paradojas más famosas (Parte 2)
Nivel A1-A2. Аудирование ("Цифры"). El patrón secreto de los números que nunca te habían contado (аудирование)